
Scaling Jenkins on Azure
it’s basically clouds all the way down

hey

R Tyler Croy
➢ github.com/rtyler
➢ twitter.com/agentdero
➢ Jenkins board member, infra lead
➢ “Community Concierge”
➢ send gifs to tyler@cloudbees.com

Running Jenkins in the Cloud™

Jenkins ♥ Docker

docker pull jenkins

Containerized master

docker run \
 -p 8080:8080 \
 -v `pwd`/jenkins:/var/jenkins_home \
 jenkins

Containerized master

Containerized master: Pros
➢ Requires Linux master node
➢ Easy to manage/update

○ LTS release updates by the Jenkins project
➢ Portability

○ Pack up your JENKINS_HOME and move to a new box

Containerized master: Cons
➢ Requires Linux master node
➢ I/O performance concerns

○ Mapping JENKINS_HOME through to container
➢ CPU scheduling

○ “Noisy neighbor” problem on Docker daemon

Containerized Build Nodes
➢ more to come later..

Running Jenkins in the Cloud™

Azure plugin

Docker plugin

Containerized Build Nodes
➢ Neat!
➢ Point it at:

○ local Docker daemon on the Jenkins master
○ a remote Docker daemon
○ a Docker Swarm endpoint

➢ Docker! DOCKER! OMG DOCKER!

Containerized Build Nodes: Pros
➢ Jenkins administrator governs images used
➢ Easy creation/management/deployment of new

build environments
➢ Portability across computing environments

○ Run it anywhere you want! As long as
■ it’s Linux
■ with a recent kernel

Containerized Build Nodes: Cons
➢ Jenkins administrator governs images used
➢ Docker-in-Docker is a failwhale

Running Jenkins in the Azure™

Azure plugin
➢ Dynamically provision Linux machines (or

Windows)
➢ Minimum of 30 minutes “Retention Time”
➢ Use specific Labels

○ “Standard_D1”, “linux” : Bad
○ “ubuntu”, “docker”, “rhel”, “highram”, “highcpu” : Good

➢ Keep “Init Script” definitions small

Docker
➢ Define Dockerfiles for build/testing

environments
➢ Enable different teams to use different images
➢ Define pipelines for those Docker images

Pipeline plugin
➢ Define your delivery pipeline in one place
➢ Check a Jenkinsfile directly into SCM

Pipeline plugin
node('docker') {
 checkout scm

 /* Using this hack to grab the appropriate abbreviated SHA1 of
 * our build's commit. Currently I cannot refer to `env.GIT_COMMIT`
 */
 sh 'git rev-parse HEAD > GIT_COMMIT'
 def shortCommit = readFile('GIT_COMMIT').take(6)

 stage 'Build'
 def image = docker.build("jenkinsciinfra/bind:build-${shortCommit}")

 stage 'Deploy'
 image.push()
}

Pipeline plugin

Scary Demo Time
this better work

neat plugins shown
➢ Pipeline
➢ Azure
➢ CloudBees Folders
➢ GitHub
➢ Timestamper
➢ NodeJS
➢ Pipeline Stage View

Other Scaley Things
that aren’t lizards

Scaling Masters is Hard™
➢ Jenkins will be better at this in the future
➢ Partition masters along pipeline boundaries

○ “Dev Jenkins” “Ops Jenkins” : Bad
○ “Middleware Jenkins” “Mobile Apps Jenkins” : Good

➢ Buy the most memory and fastest disks possible
➢ Offload as much as possible to build nodes

Pay the bills

questions

jenkins-ci.org
@jenkinsci

github.com/jenkinsci

https://jenkins-ci.org
https://jenkins-ci.org
https://twitter.com/jenkinsci
https://twitter.com/jenkinsci
https://github.com/jenkinsci
https://github.com/jenkinsci

